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Numerical simulation of bubble and droplet deformation by a level
set approach with surface tension in three dimensions
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SUMMARY

In this paper we present a three-dimensional Navier–Stokes solver for incompressible two-phase flow
problems with surface tension and apply the proposed scheme to the simulation of bubble and droplet
deformation. One of the main concerns of this study is the impact of surface tension and its discretization
on the overall convergence behavior and conservation properties.

Our approach employs a standard finite difference/finite volume discretization on uniform Cartesian
staggered grids and uses Chorin’s projection approach. The free surface between the two fluid phases
is tracked with a level set (LS) technique. Here, the interface conditions are implicitly incorporated into
the momentum equations by the continuum surface force method. Surface tension is evaluated using
a smoothed delta function and a third-order interpolation. The problem of mass conservation for the
two phases is treated by a reinitialization of the LS function employing a regularized signum function
and a global fixed point iteration. All convective terms are discretized by a WENO scheme of fifth
order. Altogether, our approach exhibits a second-order convergence away from the free surface. The
discretization of surface tension requires a smoothing scheme near the free surface, which leads to a
first-order convergence in the smoothing region.

We discuss the details of the proposed numerical scheme and present the results of several numerical
experiments concerning mass conservation, convergence of curvature, and the application of our solver
to the simulation of two rising bubble problems, one with small and one with large jumps in material
parameters, and the simulation of a droplet deformation due to a shear flow in three space dimensions.
Furthermore, we compare our three-dimensional results with those of quasi-two-dimensional and two-
dimensional simulations. This comparison clearly shows the need for full three-dimensional simulations
of droplet and bubble deformation to capture the correct physical behavior. Copyright q 2009 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

Many problems in fluid flow applications require the consideration of two incompressible immis-
cible fluids and, consequently, the treatment of the free surface between these two phases. Important
examples are the deformation of liquid–gas interfaces by aerodynamical forces as it occurs in
spray injection and atomization in liquid propulsion [1]. A reference problem in dispersion science,
emulsification, and mixing is the deformation of a liquid droplet due to a surrounding shear flow.
In such mesoscopic flow problems, when the characteristic length scale of the flow is relatively
small, surface tension effects cannot be neglected as in (most) macroscopic flows. The forces due
to surface tension play an essential role for the overall dynamics and determine the deformation
behavior of the interface. This class of applications pose a number of challenges to numerical
methods. The most substantial is the representation of the moving interface that separates the two
different fluid phases and their associated material properties such as density and viscosity, and
the appropriate treatment of surface tension effects.

Classical approaches to the tracking of moving interfaces are the Marker and Cell (MAC)
schemes [2–10] where the two fluid phases are explicitly represented by massless marker particles
and the interface needs to be reconstructed from the distribution of the marker particles. The
accurate representation of the moving interface, however, requires a large number of marker
particles and thereby a substantial computational effort. In the volume of fluid (VOF) technique
[11–18] the characteristic functions of the two fluid domains are directly approximated on the
underlying mesh by a piecewise constant function. Hence, the reconstruction of a smooth interface,
i.e. the accurate computation of curvature which is necessary for simulations involving surface
tension effects, is not straightforward in the VOF and requires sophisticated interpolation schemes
[19, 20]. This drawback is overcome in the level set (LS) approach [21–23] where the characteristic
functions of the two fluid phases are approximated by the sign of a smooth scalar function, so that
the interface is given by the zero LS of this smooth function. Owing to this smooth approximation
the computation of curvature is straightforward.

The movement of the interface, however, may lead to a substantial distortion of the LS function
over time; i.e. its gradient may become very large or very small near the interface that can
adversely affect the stable evaluation of surface tension terms. To overcome this issue, a so-called
reinitialization step must be performed. Here, the current LS function is replaced by a smoother,
less distorted function, which has (approximately) the same zero LS. Yet, the reinitalization may
compromise the mass conservation properties of the numerical scheme. A widely used and very
successful approach is the reinitialization by a signed distance function, see e.g. [24–28]. Such a
simple reinitialization technique, however, introduces numerical diffusion to the solution, which
leads to a deterioration of the volume conservation, i.e. mass conservation in incompressible flow.
To this end, several modified reinitialization methods have been developed to improve the mass
conservation [29–32]. The interplay between these techniques and the convergence behavior of
surface tension terms within a full two-phase flow solver is not completely understood.

The second major challenge encountered in the simulation of multi-phase flows on the mesoscale
is the numerical treatment of surface tension effects that cannot be neglected. One approach to the
treatment of surface tension is by variational techniques based on the Laplace–Beltrami operator
on the free surface [33–37]. Another widely used approach is the continuum surface force (CSF)
scheme [10, 38]. Here, surface tension, i.e. the respective interface condition, is modeled as a body
force acting on grid cells that contain the interface. This approach was introduced in the context of
VOF and MAC methods, but it is directly applicable to the LS approach as well [28]. Even though
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the CSF approach is reported to be quite robust, to our knowledge, the convergence behavior of
surface tension terms approximated by the CSF in conjunction with a level set method (LSM)
within a full two-phase flow solver is also not completely understood.

In this paper we present a three-dimensional incompressible Navier–Stokes solver for two-
phase flow problems based on Chorin’s projection approach on staggered Cartesian grids, the LS
technique, and the CSF scheme for the treatment of surface tension effects. To cope with the issue
of mass conservation, we employ an improved reinitialization scheme essentially due to [32] in
conjunction with a fifth-order WENO scheme and an additional fixed point iteration to enforce the
conservation of the global mass explicitly. We apply our solver to several reference problems to
validate the presented numerical scheme and to study the effect of, e.g. the reinitialization of the LS
function on the overall convergence behavior and conservation properties. For instance, we study
the test problem of a rising air bubble in water in two and three dimensions. Our two-dimensional
results compare very well with references from the literature [39, 40] for small times and we
attain more reliable results for large simulation times since we not only employ a higher-order
transport scheme for the LS function, but also attain mass conservation. A comparison of the
two-dimensional results with the computed three-dimensional results shows distinct differences,
which clearly indicates the need for three-dimensional simulations in the study of bubble and
droplet deformation in general. Furthermore, we consider the deformation of a droplet in three
dimensions due to a shear flow.

The remainder of this paper is organized as follows. The employed mathematical model is
presented in Section 2. Here, we implement the coupling of the Navier–Stokes equations for two
flow phases by the classical interface conditions which incorporate surface tension. To this end,
we discuss the CSF method in the context of the LSM. The discretization of the coupled model
is presented in some detail in Section 3. The Navier–Stokes equations as well as the transport
equation for the LS function are discretized in time using an Adams–Bashford method of second
order, whereas the reinitialization of the LS function is discretized in time using an explicit third-
order Runge–Kutta scheme. The discretization in space employs a standard finite difference/finite
volume approach on a staggered uniform grid. Furthermore, we use a signed distance function in
the LS representation of the free surface, a fifth-order WENO scheme for all convective terms,
a higher-order interpolation scheme for the LS function and an improved reinitialization scheme
including a global fixed point iteration to enforce mass conservation. In Section 4 we present
the results of several numerical experiments for model problems concerning mass conservation,
convergence of curvature, and convergence of the complete two-phase flow scheme. We study
for instance rising air bubble in water in three dimensions and its two-dimensional analogue and
compare our results to two-dimensional simulations from the literature. Here it turns out that the
results in three dimensions differ quite substantially from those computed in two dimensions which
clearly indicate the need for three-dimensional simulation of bubble and droplet dynamics. Finally,
we consider the deformation of a liquid droplet due to a surrounding shear flow. We conclude with
some remarks in Section 5.

2. MATHEMATICAL MODEL

The behavior of two immiscible incompressible fluids is governed by the incompressible Navier–
Stokes equations defined on an open set �=�1∪�2∪� f ⊂R3 with Lipschitz boundary � :=��.
Here, �1 and �2 denote the subdomains associated with the two different fluid phases, respectively.
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The free interface between the two fluid phases is denoted by � f :=��1∩��2. The two fluid
domains �1 and �2 and the free interface � f depend on time. The temporal evolution of each of
the fluids is described by the classical Navier–Stokes equations in its respective subdomain �i for
t ∈[0,T ]; i.e. we have

�i
Dui
Dt
= −∇ pi+∇ ·(�iSi )+�ig in �i

∇ ·ui = 0 in �i

ui |� = 0 in [0,T ]
ui |t=0 = u0i in �i

(1)

where i ∈{1,2} indicates the considered fluid phase. Furthermore, ui denotes the velocity field, pi
the pressure, �i the dynamic viscosity, �i the density, and g the volume force. The viscous stress
tensor is given by Si :=∇ui+{∇ui }T and the material derivative by D(ui )/Dt :=�t (ui )+(ui ·∇)ui .
The values of �i and �i in each phase are assumed to be constant. However, the system (1) is not
complete without some additional conditions imposed on the free interface � f .

The basic assumption in continuum mechanics for the free boundary � f is that it can be
regarded as a sharp interface; i.e. the interface is a two-dimensional surface, which separates the
two flow regions. For immiscible fluids this can be justified by dimension analysis, see [41] for a
detailed discussion. Hence, our two-phase flow model contains a jump in density and a jump in
viscosity across the free surface. A consequence of this assumption is that the interface possesses
no mass. Consequently, the net stress vanishes along the interface. Furthermore, the velocity must
be continuous across the free surface, i.e. u1=u2 on � f . For a more detailed discussion see [41].
The surface tension boundary conditions at the interface � f between the two fluid phases are
given by

(T1−T2) ·n=��n, (T1−T2) ·t= ��

�t
and (T1−T2) ·s= ��

�s

where Ti :=−pi I+�iSi denotes the stress tensor, � is the surface tension coefficient determined
by the physical properties of the considered fluids, and n :=n1=−n2 denotes the surface normal
on � f , i.e. the outer normal on ��1. The local curvature � is given by

�= 1

Rt
+ 1

Rs
(2)

with the radii Rt and Rs of curvature along the coordinates t and s as shown in Figure 1. We
assume that the material properties �i and �i are constant in each �i and that the surface tension
coefficient � is constant throughout the whole domain �. Therefore, the conditions on the interface
� f reduce to

u1=u2 (3)

(T1−T2) ·n=��n (4)

(T1−T2) ·t=0 (5)

(T1−T2) ·s=0 (6)
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Figure 1. Curvature for surface tension computation.

Throughout this paper, we consider surface tension forces in normal direction only. Hence,
we complete the Navier–Stokes equations (1) in each of the subdomains �i with the interface
conditions (3) and (4), whereas the tangential conditions (5) and (6) are not explicitly enforced.
Altogether, the complete model for two-phase flow problems including surface tension considered
in this paper is given by

�i
Dui
Dt
= −∇ pi+∇ ·(�iSi )+�ig in �i

∇ ·ui = 0 in �i

ui |� = 0 in [0,T ]
ui |t=0 = u0i in �i

u1 = u2 on � f

(T1−T2) ·n = ��n on � f

(7)

for i ∈{1,2}.

2.1. Formulation of surface tension within the momentum equations

To couple the two-phase-flow Navier–Stokes equations (1) with the free surface boundary condi-
tions (4), we start from the integral form of (1)∫

�i

�i
D(ui )
Dt

dx=
∫

��i

Ti ·ndF+
∫

�i

�igdx (8)

for i ∈{1,2}. Summation of both momentum equations (8) yields

�1

∫
�1

Du
Dt

dx+�2

∫
�2

Du
Dt

dx=
∫

��
T ·ndF−

∫
� f

[T]·ndF+�1

∫
�1

gdx+�2

∫
�2

gdx (9)

where T :=T1��1
+T2��2

is defined with the help of the characteristic functions ��1
and ��2

associated with the fluid domains �1 and �2, respectively. Furthermore, [T] denotes the jump in
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the stress tensor T , i.e. [T]=T1−T2 at the interface � f . With (4) and the Gauß Theorem, we
obtain ∫

��
T ·ndF=

∫
�
∇ ·Tdx (10)

Since T is discontinuous at the free surface due to the jump in the viscosity, relation (10) is to be
understood in the sense of distributions.

With (3), the velocity-field u=u1��1
+u2��2

for viscous fluids is continuous on � and we can
write

�1

∫
�1

Du
Dt

dx+�2

∫
�2

Du
Dt

dx=
∫

�
�
Du
Dt

dx (11)

Using (4) and substituting (10) and (11) into (9) and obtain the integral formulation of incom-
pressible two-phase flow with surface tension∫

�
�
Du
Dt

dx=
∫

�
∇ ·Tdx−

∫
� f

��ndF+
∫

�
�gdx (12)

The advantage of (12) is that the boundary condition for surface tension is implicitly contained
in the momentum equation. However, it is still formulated as a free boundary integral. For the
discretization we convert this free boundary integral to a volume integral via the CSF approach
[10, 38]. Then, we can easily couple the momentum equation with a LS formulation which does
not require an explicit reconstruction of the free surface, compare also [42, 43]. Note that this is
in contrast to most VOF methods where a reconstruction of � f is often required even with a CSF
formulation.

2.2. The CSF-approach in the LSM

The CSF model was first proposed by Brackbill et al. [38] for VOF methods and by Unverdi and
Tryggvason [10] for MAC methods. We now give a short description of the CSF approach in the
framework of the LSM, see [28] for details.

The aim is to provide a unified formulation of (7) on the compete domain �; i.e. we will
eliminate the explicit interface conditions in (7). To this end, we start from the two-phase flow
equations in integral form (12). There, surface tension is included as a source term on the right-
hand side. This free boundary integral needs to be converted into a volume integral to obtain the
associated differential formulation of the Navier–Stokes equations including surface tension by
passing to the limit of infinitesimally small volumes.

To this end, we construct a function � such that the interface between the two different fluids
is the zero LS of � (compare Figure 2). The interface is then given by

� f (t)={x :�(x, t)=0}
for all times t ∈[0,T ]. Note that there are arbitrarily many ways to define the LS function � away
from the free surface. Here, we choose � as a signed distance function such that

�(x, t)

⎧⎪⎨⎪⎩
<0 if x∈�1

=0 if x∈� f

>0 if x∈�2

(13)
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Figure 2. Elliptical zero-level set (left; bold line, top view), surface plot of a general level set
function with the same elliptical zero-level set (center), and a surface plot of a respective signed

distance level set function (right).

hold and the Eikonal equation |∇�|=1 is fulfilled (compare Figure 2). With the help of this LS
function � we can now easily define the density � and the viscosity � on the whole domain, i.e.
of both fluid phases. To this end, we set

�(�) :=�2+(�1−�2)H(�) and �(�) :=�2+(�1−�2)H(�) (14)

where H(�) denotes the Heaviside function, which is defined as

H(�) :=

⎧⎪⎪⎨⎪⎪⎩
0 if �<0

1
2 if �=0
1 if �>0

Note that there are a number of variations in the definition of the mixture viscosity [44, 45] at the
interface which yield very similar results for small density and viscosity ratios only. However, the
so-called serial average of (14) employed in this study is the most common approach [45].

Now, with these �-dependent material parameters, Equation (12) can be expressed as∫
�

�(�)
Du
Dt

dx=
∫

�
∇ ·Tdx−

∫
� f

��ndF+
∫

�
�(�)gdx (15)

Following Chang et al. [46] we now rewrite the free boundary integral as a volume integral with
the help of a Dirac �-functional. Since n=∇�/|∇�| and |∇�|=1, this results in the identity∫

� f

��ndF=
∫

�
��(�(x))�(�(x))∇�(x)dx (16)

where � denotes the one-dimensional Dirac �-functional, i.e.
∫

R f (x)�(x)dx= f (0) for f :R→R,
such that

∫
R3 �(�(x))dx=∫� f

1ds. We substitute (16) into (15) and obtain∫
�

(
�(�)

Du
Dt
−∇ ·T+��(�)�(�)∇�−�(�)g

)
dx=0
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which now only involves a volume integral. Since this relation holds for any arbitrary volume �,
we obtain the associated differential equation

�(�)
Du
Dt
−∇ ·T+��(�)�(�)∇�−�(�)g=0

With the definition of the stress tensor T=−pI+�(�)S, this yields the equation

�(�)
Du
Dt
+∇ p=∇ ·(�(�)S)−��(�)�(�)∇�+�(�)g (17)

In addition to (17) we need to take into account the continuity equation

∇ ·u=0 (18)

and the time dependence of the free surface � f . This time-dependent movement is modeled by
a simple advection of the interface due to the underlying flow. Hence, we complement (17) and
(18) by the simple transport equation

�t�+u·∇�=0 (19)

for the LS function with initial value �0(x)=�(x,0).

3. NUMERICAL METHOD

In this section we present our overall numerical scheme for the treatment of the two-phase flow
equations with surface tension in three space dimensions as given by (17), (18), and (19). The
scheme is based on the well-known projection method. It employs a semi-implicit time-stepping
scheme and a finite difference discretization in space on a staggered grid which is also used for
the approximation of the LS function. We begin with a short review of the classical projection
method before we cover the details of the incorporation of the LSM into the projection scheme.
Here, we need to be concerned with three major issues: the movement of the interface and the
conservation properties of the overall scheme, the discontinuity of the material properties at the
interface, and the accurate approximation of the surface tension.

The movement of the free interface is modeled via the transport equation (19) for the LS
function �. Here, we have to deal with the problem of volume and mass conservation of the
two different fluid phases. Hence, we employ a fifth-order WENO scheme for the evaluation of
all convective terms and reinitialize the LS function � in every time step to maintain the signed
distance property of � over time. Furthermore, we use an additional fixed point iteration to enforce
the conservation of the global mass explicitly. Note that the discontinuity of the density and
viscosity at the interface may lead to spurious oscillations and instabilities; therefore, we need to be
concerned with the development of an appropriate smoothing scheme for the material properties.
Moreover, it is essential to employ a higher-order interpolation scheme for the LS function to
obtain an accurate approximation of the surface tension, i.e. of the curvature. In the following we
cover these issues in some more detail.

3.1. Time discretization and projection method

A widely used and very successful scheme for the solution of the incompressible Navier–Stokes
equations is the so-called projection method due to Chorin [47]. Here, the starting point is the
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consideration of the time-discrete Navier–Stokes equations using a forward Euler scheme; i.e.
we compute the solution un+1 at time tn+1 from the solution un of the previous time step. To
obtain the solution of (17) under the constraint (18) in a single Euler step, we employ a two step
approach. First, we compute an intermediate velocity field u∗ via an explicit transport, which may
not yield u∗ to be divergence free. Then, in a second step, we compute a correction ∇ pn+1 of the
intermediate velocity field u∗ by the pressure Poisson equation which leads to a divergence-free
velocity field un+1; i.e. we treat the pressure (and the LS function) implicitly.

By an Euler time discretization of (17) we obtain the intermediate velocity field u∗ as

u∗−un
�t
=−(un ·∇)un+g+ 1

�(�n)
(∇ ·(�(�n)Sn)−��(�n)�(�n)∇�n) (20)

using the definition of the material derivative D(ui )/Dt :=�t (ui )+(ui ·∇)ui . The superscript n
indicates the respective time step. With this definition, we can rewrite the time-discrete Navier–
Stokes equations as

un+1−u∗
�t

+ ∇ p
n+1

�(�n+1)
=0 (21)

∇ ·un+1=0 (22)

Note that the LS function �n+1 at time step n+1 must be available for the definition of (21). To
this end, we must solve (19) for the (n+1)th time step prior to the treatment of (21), see the next
section for the construction of �n+1.

Now, we apply the negative divergence operator to Equation (21), and with (22) we arrive at
the pressure Poisson equation with the inverse density field as diffusion coefficient

−∇ ·
(

1

�(�n+1)
∇ p̂n+1

)
=−∇ ·u∗ (23)

where p̂n+1 :=�tpn+1. We obtain an appropriate boundary conditions‡ for the pressure Poisson
equation by projecting the vector equation (21) onto the outer unit normal of the domain boundary

�pn+1

�n

∣∣∣∣
�
= �

�t
(u∗�−un+1� ) ·n

Thus, if we require un+1� =u∗�, we obtain homogeneous Neumann boundary conditions for the
pressure

� p̂n+1

�n

∣∣∣∣
�
=0

To ensure the existence of a solution, we also need to fulfill the compatibility condition

0=
∫

�
∇ ·udx=

∫
�
u·nds

‡The construction of boundary conditions for the pressure Poisson equation is in general more involved [48]. However,
since we are interested mainly in convection-dominated flows, the use of natural boundary conditions is reasonable.
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which expresses the fact that the velocity on the boundary � must have a vanishing total flux. Note
that the employed space discretization must comply with this requirement. Now, we can solve the
system (23) for p̂n+1=�tpn+1 at least up to a constant. We fix this remaining degree of freedom
in the pressure pn+1 via the additional condition∫

�
pn+1 dx=0

to ensure the comparability of the pressure results at different times tn . Finally, we obtain a
correction of the intermediate velocity field u∗, such that the velocities at time tn+1

un+1=u∗− 1

�(�n+1)
∇ p̂n+1 (24)

are now divergence free.
The extension of Chorin’s projection method to higher-order multi-step time discretizations is

straightforward. Throughout this paper we use a second-order Adams–Bashford scheme for the
integration of the momentum equation (20), i.e.

u∗−un
�tn

= 1

2

(
�tn+2�tn−1

�tn−1
Ln− �tn

�tn−1
Ln−1

)
(25)

where �tn= tn− tn−1 denotes the length of the nth time step and Ln the right-hand side of (20)
evaluated at time tn . Note finally that the generalization of the projection approach to other
integration schemes like a TVD Runge-Kutta method is somewhat more involved since we must
ensure that the respective sub-step velocities are divergence free.

3.2. Time discretization and the LS function

In the following we consider the time discretization of the transport equation (19) for the LS
function � and its effect on the signed distance property of �. The discretization is based on a
second-order Adams–Bashford scheme (25) for time discretization and a fifth-order WENO scheme
[49, 50] for the discretization of the convective term un ·∇�n . Furthermore, we use a third-order
Lagrange interpolation scheme for the evaluation of the velocities at the cell centers.

Note that in general the transport of the LS function � due to (19) will destroy its signed
distance property. This property, however, is essential for the stable approximation of surface
tension. Hence, a transported LS function should not be used directly for the approximation of
curvature or the surface tension. Instead, we refer to the transported LS function as an intermediate
LS function �∗; i.e. the time-stepping scheme gives �∗ and not �n+1 so that

�∗=�n+ 1

2

(
�tn+2�tn−1

�tn−1
un ·∇�n− �tn

�tn−1
un−1 ·∇�n−1

)
(26)

To obtain a valid signed distance function �n+1 from �∗ a reinitialization must be employed.
There exist a number of variants for the reinitialization of the LS function; the one we employ in
our implementation is essentially due to Sussman et al. [28]. Here, we give a short review of this
scheme for the sake of completeness.
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Consider a given function �∗(x) whose zero LS is the fluid interface. To generate the appropriate
signed distance function �n+1(x) with an approximately identical zero LS as �∗(x), we discretize
the following pseudo-transient Hamilton–Jacobi problem

�	d+sign(�∗)(|∇d|−1)=0 (27)

and evolve it to steady state with the initial value d(x,0)=�∗(x). Note that the term sign(�∗)|∇d|
can be interpreted as motion along the normal direction away from the zero LS. Since our numerical
approach relies on the signed distance property in the vicinity of the free surface only it is sufficient
to compute the solution of (27) in an 
(x)-neighborhood of the zero LS. This is also the region
where the largest deviation from the exact signed distance occurs due to the transport of the LS
function. The parameter 
(x) must be chosen with respect to the spatial resolution of the employed
numerical scheme, see the next section. The Hamilton–Jacobi reinitialization (27) is discretized
using a third-order TVD Runge–Kutta [51] method in time and a fifth-order WENO scheme in
space.

For the numerical treatment of (27) it is advisable to employ a regularized signum function
since this leads to better conservation properties as well as a more stable approximation.§ There
exist various different regularization approaches, e.g. [28, 32]. In our implementation we employ
the regularized signum function

s̃ign(�∗)= �∗√
(�∗)2+|∇�∗|2(�x2) (28)

due to Peng et al. [32]. In the discrete setting the parameter �x is replaced by the spatial mesh-
width h, see Section 3.3. Since (28) takes the gradient of �∗ into account we obtain the discrete
conservation of the sign of the LS function (in the grid nodes). Note that the smoothed signum
function (28) needs to be updated before each Euler-substep in the Runge–Kutta scheme.

To further improve the conservation properties of our method we employ an additional Picard
iteration

�n+1←�n+1+�(V1(�
0)−V1(�n+1)) (29)

where V1(�
0) denotes the initial volume of �0

1 and V1(�
n+1) :=∫� H(�n+1)dx is the volume of

�n+1
1 after the reinitialization step to enforce the conservation of mass globally over time. Note that

the choice of the damping parameter ��1 has a substantial impact on the speed of convergence
of iteration (29). Here, the main influence on � is the topology of the two fluid phases, i.e. the
curvature of � f .

3.3. Space discretization

Let us now consider the numerical treatment of the momentum equation. To this end, we need to
specify the spatial discretization scheme. Here, we employ a widely used finite difference/finite
volume scheme on a staggered grid to discretize the velocity field u :=(u,v,w)T and the pressure
p; i.e. the cell centers xi, j,k correspond to the pressure nodes, whereas the cell-face centers

§Note that this regularization scheme is independent of the smoothing of the material parameters given in Section 3.4,
which is required for the treatment of surface tension effects only. However, we always use a regularized signum
function.
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Figure 3. Location of variables in a staggered grid cell.

xi+1/2, j,k , xi, j+1/2,k , and xi, j,k+1/2 give the velocity nodes for u, v, and w, respectively, see e.g.
[6]. Furthermore, we discretize the LS function � in the pressure nodes, see Figure 3. Note that
all discrete fields are denoted by a subscript h, e.g. the discrete velocity in the x-direction is given
by uh and the discrete LS function by �h .

The computation of the discrete intermediate velocity u∗h in (20) requires the discretization of
the viscous terms ∇ ·(�(�n

h)S
n
h) in the velocity nodes of the staggered grid. Since the velocities

are continuous for viscous fluids (and due to the use of a smoothed viscosity, compare (30)) the
first and second-order derivatives are approximated with central differences. Note however that we
need to employ an appropriate interpolation scheme to evaluate the discrete LS function �h in all
velocity nodes, i.e. in the cell-face centers, since �h is itself given in the pressure nodes, i.e. in
the cell centers. To this end, we use a third-order Lagrange interpolation scheme.

To be able to treat convection-dominated flow problems, it is essential to employ a higher-
order discretization for the convective terms. Here, we use a fifth-order WENO scheme [49, 50]
for the treatment of all convective terms, see [52] for details. This approach yields a very good
conservation properties even in the presence of large velocity gradients and allows for a stable
approximation of the curvature. Note that an appropriate interpolation scheme for the velocities is
required to apply the employed fifth-order WENO scheme. Again, we use a third-order Lagrange
interpolation.¶

3.4. Smoothing, surface tension, surface normals, and curvature

So far we have neglected the discontinuity of the density at the interface. Yet, a jump in the
diffusion coefficient in (23) can have a substantial adverse effect on the stability and the accuracy
of our numerical scheme. Hence, we need to develop an appropriate smoothing scheme for the
material properties, so that the density and the viscosity are at least continuous across the interface.
This smoothing scheme, however, should not affect the approximation properties globally. Another
challenge here is of course the discretization of the Dirac delta functional introduced by the CSF-
approach. In general the main issue in the discretization of a CSF formulation is the introduction
of the so-called parasitic currents [14] that also arise in our approach. To our knowledge; however,

¶At the boundary of the computational domain we use a right- or left-weighted Lagrange interpolation. Note that
for the evaluation of this higher-order interpolation scheme some velocity values first need to be interpolated in
the cell-face centers. Here, we use a two-dimensional Lagrange interpolation of third order. Close to the boundary,
we employ a bilinear interpolation.
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Figure 4. Numerical smoothing region defined in (33) with c�=2 for a spherical droplet.

there is no discrete formulation of the CSF method that completely avoids this issue and a detailed
analysis [53, 54] of the impact of parasitic currents on the overall convergence behavior is an open
question.

To this end, let us consider the interface as having the thickness 
(x), which is proportional
to the spatial mesh-width h, see Figure 4. Then, we replace the discrete density �(�h) and the
discrete viscosity �(�h) by

�
(�h)=�2+(�1−�2)H

(�h) and �
(�h)=�2+(�1−�2)H


(�h) (30)

where H 
 denotes a smoothed Heaviside function

H 
(�h(x)) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if �h(x)<−
(x)

1

2

(
1+�h(x)



+ 1


sin

(
�h(x)

(x)

))
if |�h(x)|�
(x)

1 if �h(x)>
(x)

(31)

The associated smoothed delta functional is given by the derivative of (31), i.e.

�
(�h(x)) :=��h
H 
(�h(x))=

⎧⎪⎨⎪⎩
1

2
(x)

(
1+cos

(
�h(x)

(x)

))
if |�h(x)|�
(x)

0 else

(32)

According to [55] a space- and �h-dependent smoothing region must be employed to account for
mesh-alignment effects. We employ the smoothing region |�h(x)|�
(x) with


(x)=�(x)h where �(x) :=c� ‖∇�h(x)‖1
‖∇�h(x)‖2

<C (33)

with c�=1.5 in our implementation.
The fundamental assumption for the above smoothing scheme is that the gradient of the LS

function is constant in the 
(x) region; i.e. that the contours of �h in the 
(x) region are symmetric
to the zero LS. Owing to the choice of a signed distance function in our implementation this
assumption is automatically satisfied.
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Note that we employ the smoothed Heaviside function in the approximation of the volumes
V1(�

0) and V1(�
n+1) in the iteration (29). The respective integrals

∫
� H 
(�h)dx are approximated

by a simple midpoint integration rule and we employ a damping of �=0.1 throughout this paper.
The use of the smoothed delta functional (32) reduces the quality of the approximation locally

within the smoothing region by one order. To this end, consider a function g and its approximation
gh with a pointwise approximation error g−gh of order O(h p). Then, the smoothed error (g−gh)�


is of the order O(h p)O(
(x)−1)≈O(h p−1) since 
(x)≈h.
Finally, we must consider the approximation of the surface tension for the overall discretization

of the momentum equation (17). Recall that the surface tension force enters as a singular source
term which we converted to a volume integral using a delta functional and the CSF-approach.
Hence, the main ingredient in the approximation of the surface tension is the use of the smoothed
delta functional �
(�i ) given in (32) with 
 defined in (33). This leads to a volumetric approximation
of the surface tension force with support in the 
-neighborhood of the free surface, i.e.

���(�)n≈��h�

(�h)nh

Recall that the discrete unit normal nh on the interface is given by nh :=∇�h/|∇�h | and the
discrete curvature in three dimensions is defined as �h :=∇ ·nh . Note that even though we employ
a signed distance function, i.e. |∇�h |=1 in the 
-neighborhood of the free surface, we compute
nh by ∇�h/|∇�h | rather than just by ∇�h . Similarly, we compute the discrete curvature �h by
∇ ·nh rather than by ��h . This procedure allows for a more stable approximation of the surface
normals as well as the curvature at cusps. Note that all differential operators in these computations
are approximated using central differences.

Now that the momentum equations are discretized, it remains to discretize the pressure Poisson
equation

−∇ · 1

�
(�n+1
h )
∇ p̂n+1h =−∇ ·u∗h (34)

where �
(�n+1
h ) denotes the smoothed discrete density field (30) after the advection step (26), the

reinitialization (27) and the fixed point iteration (29). Since the velocities of a viscous fluid flow
are sufficiently smooth, we compute the right-hand side of (34) with central differences.

The left-hand side of (34) is discretized in three dimensions with a standard seven-point stencil
in the cell centers where the smoothed density field is evaluated in the cell-face centers via
an interpolated LS function. According to Section 3.1, we complement the pressure equation
with homogeneous Neumann boundary conditions and enforce a vanishing mean for the pressure
pn+1=(�t)−1 p̂n+1. For the iterative solution of the resulting semi-definite diffusion equation we
employ our parallel algebraic multigrid solver [56].

3.5. Adaptive time step control

Since we employ an explicit scheme for the velocities we have to deal with a time step restriction
due to the CFL condition for explicit schemes. The CFL condition takes convection, viscosity,
surface tension, and gravity into account and ensures that the discrete information can evolve no
further than one grid cell since the discrete difference equations consider only fluxes between
adjacent cells.
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With the definitions umax :=maxi, j,k |ui+1/2, j,k |, �max :=maxi, j,k |�i, j,k |, and

V :=max

{
�1
�1

,
�2
�2

}(
2

(�x)2
+ 2

(�y)2
+ 2

(�z)2

)
the overall time step restriction for the u-component of the velocity field can be expressed as

�tu�2Cu

where

Cu :=
((umax

�x
+V

)
+
√(umax

�x
+V

)2+ 4|g1|
�x
+ 8�max�

c�(�2+�1)(�x)2

)−1
The bounds for �tv and �tw associated with the velocities in the y- and the z-direction involving
Cv and Cw, respectively, are defined in an analogous way. Hence, we first obtain an appropriate
time step restriction �tu/v/w�2Cu/v/w for each velocity component separately. The final time step
restriction can then be computed easily as the minimum of these three scalar bounds. This yields
the overall time step restriction

�t�2�min
�

(Cu,Cv,Cw)

with a safety factor �∈(0,1]. Throughout this paper, we employ this adaptive time step control
using �=0.3 in our computations.

4. NUMERICAL RESULTS

In this section we present the results of our numerical experiments in three space dimensions.
First, we investigate the order of convergence obtained for the approximation of the curvature
by means of a diagonally transported unit sphere. In particular, we analyze the effect of the LS
reinitialization and the fixed point iteration on the convergence of the curvature and the mass
conservation properties of our numerical scheme. Then we examine the global order of convergence
to our overall numerical scheme for two-phase flow problems including surface tension on the
basis of a rising bubble test problem. Finally, we consider the deformation of a liquid droplet due
to a surrounding shear flow.

4.1. Mass conservation and convergence of curvature

First, we investigate the convergence behavior of our numerical scheme with respect to mass and
curvature considering the simple test case of an advected unit sphere. Since the curvature of the
unit sphere is known analytically, we can directly compare the approximated curvature with the
exact solution.

To this end, we consider the domain �=[0,4]3, which we discretize by a sequence of uniformly
refined equidistant grids. Furthermore, we employ periodic boundary conditions on �� and a
stationary velocity field

u(x, y, z)=1, v(x, y, z)=1, w(x, y, z)=0
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As an initial condition for the LS function we use the analytic distance function

�(x, y, z)=1−
√

(x−2)2+(y−2)2+(z−2)2 (35)

whose zero LS is a sphere with radius r=1 centered at (2,2,2); i.e. we transport the sphere over
time along the diagonal in the xy-plane.

In this experiment we consider four different configurations of our numerical scheme to distin-
guish the effects on the convergence behavior associated with the reinitialization step and the fixed
point iteration; i.e. we perform the simulation with/without reinitialization (27) and with/without
fixed point iteration (29).

Recall that the curvature is defined as

�h(�h)(x)=∇ ·
∇�h(x)
‖∇�h(x)‖

Let us furthermore define the following discrete error norms

e�,h

 (x) := |�h(�h)(x)−�(�)(x)|

|�(�)(x)| with �(�)(x) := 2

1−�(x)
(36)

e�,h

,1 :=

∑
xi ,|�h(xi )|<�(xi )h

e�,h

 (xi ) (37)

e�,h

,∞ := max

xi ,|�h(xi )|<�(xi )h
e�,h

 (xi ) (38)

in the 
(x) region given by |�h(xi )|<�(xi )h=
(x) (compare (33). Thus, we measure the error
not only on the interface, but also near the interface. Note that we do not employ the smoothed
delta functional �
 in this computation. Recall that �
 is required only for the evaluation of surface
tension force; hence, it is not needed for the approximation of the curvature.

Furthermore, we measure the error with respect to the initial mass at time t=4 via the discrete
norms

mh,t

 :=

∑
xi ,|�h(xi )|<�(xi )h

H 
(�t
h(xi ))h

3, em,h

 := |m

h,t

 −mh,0


 |
|mh,0


 |
(39)

The respective algebraic convergence rates � are determined by

� :=− loge2h/eh

logdof2h/dofh
(40)

respectively.
Since we employ an absolute stopping criterion of 10−7 in the fixed point iteration we anticipate

to find a constant error em
 when the fixed point iteration is used independently of the reinitialization
step. Owing to the fact that we employ a constant velocity field in this experiment the signed
distance property of the LS function is only slightly disturbed over time so that we anticipate to
find very similar results for the cases with/without reinitialization.

The results of our numerical study are summarized in Table I and Figures 5 and 6. The
convergence rates �m
 are obtained with respect to the total number of grid cells dof, whereas the
convergence rates ��


 are determined with respect to the number of grid cells dof
 in the 
(x) region.
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Table I. Relative errors e and convergence rates � obtained for the curvature � and mass m.

1/h dofh dofh
 e�,h

,1 ��,h


,1 e�,h

,∞ ��,h


,∞ em,h

 �m,h




Reinitialization (−) fixed point (−)
25 15625 2214 7.034−3 — 3.890−2 — 3.130−4 —
50 125000 8928 1.288−3 1.218 5.236−3 1.438 1.521−4 0.346
100 1000000 35376 3.119−4 1.030 1.015−3 1.192 4.823−5 0.552
200 8000000 141440 7.773−5 1.003 2.271−4 1.080 1.244−5 0.651
400 64000000 565768 1.943−5 1.000 5.320−5 1.047 3.123−6 0.664

Reinitialization (+) fixed point (−)
25 15625 2214 1.133−2 — 4.370−2 — 1.969−3 —
50 125000 8932 1.437−3 1.481 4.622−3 1.611 4.652−6 2.909
100 1000000 35380 3.128−4 1.108 9.112−4 1.180 4.289−5 −1.068
200 8000000 141440 7.769−5 1.005 2.147−4 1.043 1.220−5 0.604
400 64000000 565768 1.943−5 0.999 5.180−5 1.026 3.105−6 0.658

Reinitialization (−) fixed point (+)
25 15625 2214 7.034−3 — 3.890−2 — 8.338−9 —
50 125000 8928 1.288−3 1.218 5.236−3 1.438 8.365−8 −1.109
100 1000000 35376 3.120−4 1.030 1.015−3 1.192 7.702−8 0.039
200 8000000 141436 7.773−5 1.003 2.271−4 1.080 9.244−8 −0.087
400 64000000 565768 1.943−5 1.000 5.320−5 1.047 9.727−8 −0.024
Reinitialization (+) fixed point (+)
25 15625 2214 1.131−2 — 4.373−2 — 5.157−9 —
50 125000 8932 1.437−3 1.479 4.623−3 1.611 8.952−8 −1.373
100 1000000 35380 3.129−4 1.107 9.113−4 1.180 7.659−8 0.075
200 8000000 141436 7.769−5 1.005 2.147−4 1.043 9.238−8 −0.090
400 64000000 565768 1.943−5 0.999 5.180−5 1.026 9.725−8 −0.024

Since dof
≈h−2 the classical second-order convergence corresponds to �=1. Analogously, we
obtain classical second-order convergence for the mass if �= 2

3 since dof≈h−3.
From the numbers displayed in Table I and the plots displayed in Figures 5 and 6 we can clearly

observe this anticipated optimal convergence behavior of our numerical scheme. As expected the
error with respect to mass is constant <10−7 if the fixed point iteration with absolute stopping
criterion is used; i.e. we find the rate �m
 ≈0 due to the absolute stopping criterion. The reinitial-
ization (R+) has almost no effect on the convergence behavior in this example since the distance
property of the LS function is well preserved over time due to the constant advection velocity.

4.2. Convergence for two-phase flow with surface tension

To determine the convergence behavior of the complete two-phase flow solver including surface
tension, we now consider a rising bubble reference problem. Here, a spherical bubble of a lighter
fluid rises and deforms in a denser fluid due to gravitational forces. The deformation behavior
of the bubble is dominated by surface tension effects. Thus, we must consider surface tension
forces in our numerical scheme, so that the smoothed delta functional �
 is employed in these
computations. Furthermore, the deformation of the spherical bubble is substantial over time so
that a re-initialization step must be employed to enforce the signed distance property of the LS
function for all times. To cope with the loss of mass due to the re-initialization of the LS function
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Figure 5. Convergence history of the curvature.
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Figure 6. Convergence history for the relative error of mass.

we again employ a global fixed point iteration. For comparison we also give the results obtained
without the fixed point iteration (Figure 7).

We anticipate to find the first-order convergence near the free surface due to the smoothing
of the delta functional, whereas away from the free surface we expect to obtain a second-order
approximation since there, the smoothed delta functional is not active. Hence, we expect to find a
global approximation order close to two.

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 62:963–993
DOI: 10.1002/fld



DROPLET DEFORMATION BY A LEVEL SET APPROACH 981

Figure 7. Rising bubble without (upper row) and with (lower row) fixed point iteration for
improved mass conservation at times t=0.075s (left column) and t=0.15s (right column)
for h= 1

37 . Depicted is a semi-transparent iso-surface of the zero-level set and a contour
plot of the v-velocity along the center plane.

The physical properties of the considered fluids and the boundary conditions are given in Table II.
The initial condition for the LS function � corresponds to a spherical bubble with its center located
at (0.075m, 0.05m, 0.075m) and radius r=0.025m. We consider the computational domain
�=[0,0.15m]3 which we discretize by three uniformly refined equidistant grids with mesh-width
h= 1

37 ,
1
73 ,

1
145 together with the equidistant time steps �th=6.25−5,2.50−4,1.00−3, respectively.

Furthermore, we employ a gravitational force g=(0,−9.81,0)Nm.
Owing to the lack of an analytical solution we employ a reference solution computed on a grid

with mesh-width 1
289 to assess the quality of our numerical scheme. To this end we make the

definitions

E ref
h (�h) := I refh �h−�ref
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Table II. Material parameters and boundary conditions
employed in the rising bubble problem.

fluid1 :�1=2.5−4 kg/ms, �1=1.00 kg/m3

fluid2 :�2=5.0−4 kg/ms, �2=1.01 kg/m3

surface tension: �=5.0−3N/m
boundary conditions: slip

Fluid1 denotes the bubble and fluid2 the surrounding fluid.

where I refh denotes a tri-linear interpolation of the data computed on a mesh with mesh-width h
to the reference mesh

‖�ref‖L2 := 1

Nref

(
Nref∑
i=1
|�ref(xi )|2

)1/2

, ‖�ref‖L∞ := max
i=1,...,Nref

|�ref(xi )|

and

e�
p,h :=

‖E ref
h (�h)‖L p

‖�ref‖L p
(41)

We consider the convergence of the velocities uh , vh , wh , the LS function �h , and the pressure ph
in this experiment. Again we determine the algebraic convergence rates according to (40) so that
classical second-order convergence is obtained if �= 2

3 . Since we must employ the smoothed delta
functional to realize the surface tension in our simulation we cannot expect to find �= 2

3 globally,
but we anticipate to find � between 1

3 and 2
3 only. On finer grids we expect to find � being closer

to 2
3 due to the smaller discrete surface to volume ratio; i.e. the smaller impact of the smoothing

of the delta functional.
The measured relative errors (41) and the respective convergence rates (40) are given in Tables III

and IV. From the displayed numbers we can observe the anticipated convergence behavior. We
find the convergence rates � between 1

3 and 2
3 approaching 2

3 with decreasing mesh-width for the
velocities with respect to the L2-norm and the L∞-norm. Furthermore, the results obtained for
the u and w velocities are identical due to the symmetry of the problem. The relative errors and
convergence rates attained for the LS function � correspond very well to those of the velocities.
Again we find � between 1

3 and 2
3 approaching 2

3 on finer grids indicating a close to second-order
convergence also for the LS function. The positive effect of the fixed point iteration on the mass
conservation is clearly visible from the measured relative errors em,h


 given in Table IV. We obtain
roughly five digits accuracy in mass with the fixed point iteration on all grids, whereas without
the fixed point iteration we find only up to three digits accuracy. As expected, the convergence
behavior of the pressure p is somewhat reduced due to the fact that the pressure is discontinuous
across the interface.

4.3. Deformation of an air bubble in water

Next we consider a rising air bubble in water; thus, a two-phase flow problem with large jumps in
the material parameters. To this end, we consider the three-dimensional version of a model problem
studied in [39, 40]. The domain and initial fluid phases are �=(0,0.2)m×(0,0.3)m×(0,0.2)m,
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Table III. Convergence study for rising bubble problem at time t=0.075s.
1/h eu,h∞ �u,h∞ eu,h

2 �u,h
2 ev,h∞ �v,h∞ ev,h

2 �v,h
2 ew,h∞ �w,h∞ ew,h

2 �w,h
2

Fixed point (−)
37 3.92−1 — 2.08−1 — 1.13−1 — 1.09−1 — 3.92−1 — 2.08−1 —
73 2.09−1 0.31 8.47−2 0.44 7.67−2 0.19 4.92−2 0.39 2.09−1 0.31 8.47−2 0.44
145 6.94−2 0.54 2.60−2 0.57 3.52−2 0.38 1.59−2 0.55 6.94−2 0.54 2.60−2 0.57

Fixed point (+)
37 3.87−1 — 2.04−1 — 1.20−1 — 1.11−1 — 3.87−1 — 2.04−1 —
73 2.06−1 0.31 8.35−2 0.44 6.96−2 0.27 5.01−2 0.39 2.06−1 0.31 8.35−2 0.44
145 6.76−2 0.54 2.56−2 0.57 2.97−2 0.41 1.60−2 0.56 6.76−2 0.54 2.56−2 0.57

Table IV. Convergence study for rising bubble problem at time t=0.075s.
1/h em,h


 �m,h

 e�,h∞ ��,h∞ e�,h

2 ��,h
2 ep,h∞ �p,h∞ ep,h2 �p,h

2

Fixed point (−)
37 4.621−2 — 3.14−2 — 1.89−2 — 6.51−1 — 1.14−2 —
73 1.158−2 0.679 1.27−2 0.44 6.90−3 0.50 5.89−1 0.05 4.90−3 0.41
145 2.402−3 0.764 4.66−3 0.49 2.19−3 0.56 4.26−1 0.16 1.92−3 0.45

Fixed point (+)
37 4.035−5 — 3.49−2 — 1.48−2 — 6.52−1 — 1.04−2 —
73 2.343−5 0.267 1.32−2 0.48 6.32−3 0.42 5.90−1 0.05 4.55−3 0.41
145 6.541−6 0.620 4.46−3 0.53 2.15−3 0.52 4.27−1 0.16 1.82−3 0.45

bubble radius r0= 1
30 m and center (0.1m, 0.1m). The gravitational force and material properties

are g=(0,−9.8,0)m/s2, �=0.0728N/m, �water=103 kg/m3, �air=1.226kg/m3, �water=1.137×
10−3 kg/ms, and �air=1.78×10−5 kg/ms. We employ no-slip boundary conditions on ��.

In Figure 8 we give the interface positions at times t=0.01s, 0.02s, 0.035s, and 0.05s on
three different meshes. These results compare very well with those of [39, 40] up to t=0.035s
and the results on the three considered meshes are almost identical. For later times t�0.035 when
the bubble is substantially deformed from its initial state we clearly see the improvement in the
simulation due to mesh refinement. Our results however for t�0.035 are quite different from those
of [39, 40], which are due to the fact that we consider a three-dimensional setting where the surface
to volume ratio is smaller than in two dimensions. To confirm this assertion, we also simulated
the quasi-two-dimensional analogue with periodic boundary conditions in the z-direction; i.e. we
consider a rod-shaped bubble. The computed results are presented in Figure 9.

Comparing our results of Figure 9 with the two-dimensional simulation of [40] obtained for the
ghost fluid method, we find a very good agreement up to t�0.035. For later times t>0.035 the
loss of mass that occurs in the ghost fluid method of [40] is becoming substantial and hence yields
a deterioration of the quality of the simulation. Our scheme however ensures mass conservation
so that even long-time simulations can be carried out reliably. The numerical approach presented
in [39] also attains mass conservation, but there a first-order transport of the LS function is only
employed, which again spoils the quality of long-time simulations. In our approach we employ a
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Figure 8. Air bubble rising in water at times t=0.01s, 0.02s, 0.035s, and 0.05s (left to
right). Depicted in the top row are the interface positions for mesh-width=( 1

160 ,
1.5
240 ,

1
160 ). On

the bottom row we give the intersections of the interface with the center plane of the
computational domain for the mesh-widths=( 1

40 ,
1.5
60 , 1

40 ), ( 1
80 ,

1.5
120 ,

1
80 ), and ( 1

160 ,
1.5
240 ,

1
160 )

(bold line corresponds to finest resolution).

higher-order transport scheme. Thus, we attribute the differences of our results to those of [39]
for later times t>0.035 to this superior transport step.

In summary, the results presented in Figures 8 and 9 clearly show the need for three-dimensional
simulations of bubble dynamics. The bubble depicted in Figure 8 is substantially faster and
undergoes a different deformation pattern than its two-dimensional counterpart given in Figure 9,
which is due to the difference in the surface to volume ratio and the stronger interaction with the
boundary in two dimensions.

4.4. Deformation of a droplet in shear flow

Let us finally apply the presented numerical scheme to compute the deformation of a small droplet
submitted to a shearing flow. To this end, we consider the idealized but representative reference
problem of a circular drop with radius rD sheared by a surrounding velocity field [16–18]. Here,
the deformation behavior depends on the material properties of the two considered fluids and the
employed shear rate �̇. For instance, we can obtain a steady-state solution with a deformed (close
to) elliptical droplet geometry in the case of sufficiently large surface tension force. On the other
hand, if the surface tension force is too small to cope with the counteracting forces imposed by
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Figure 9. Quasi-2D air bubble rising in water at times t=0.01s, 0.02s, 0.035s, 0.05s,
0.075s, and 0.1s. We give the intersections of the interface with the center plane of the
computational domain for the mesh-widths=( 1

40 ,
1.5
60 , 1

4 ), ( 1
80 ,

1.5
120 ,

1
8 ), and ( 1

160 ,
1.5
240 ,

1
16 )

(bold line corresponds to finest resolution).

the shear flow, the droplet undergoes a change in topology and may be ruptured and breaks into
daughter droplets [16].

Let us denote the viscosity of the surrounding fluid by �M and the viscosity of the droplet by
�D . The characteristic non-dimensional parameter of such a problem is the capillary number

Ca := �̇�MrD
�

(42)

The capillary number is a measure of the shear stress relative to the surface tension. The deformation
behavior of the droplet is qualitatively determined by the capillary number Ca and the Reynolds
number Re of the flow. According to [16] there are two flow regimes: a stationary regime (SCT)
where the droplet attains its initial topology, and an instationary regime (ITC) where the droplet
undergoes topological changes and is ruptured into daughter droplets over time, see Figure 10.
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Figure 10. Phase diagram of droplet deformation with respect to the capillary number Ca and Reynolds
number Re. The stationary regime with constant topology is indicated by SCT, the instationary regime

where topological changes occur is indicated by ITC.

First, we consider four representative parameter settings for the SCT-regime with Reynolds
numbers just below the respective critical values, namely (Ca,Re)=(0.25,1.5), (0.2,4),
(0.15,10), and (0.1,20).‖ We use periodic boundary conditions in horizontal direction and set
v=(±1,0,0)m/s on the top/bottom domain boundary, i.e. �̇=2. Note that these parameter
choices were also considered in [16, 17] using a VOF scheme. The final stationary results obtained
for these settings are given in Figures 11 and 12. These results compare very well with those
of [16, 17]. With increasing Reynolds number we also find a loss of symmetry of the droplet
across the mid-plane and a stronger deviation of the droplet’s geometry from an ellipsoidal shape.
Furthermore, the flow field inside the droplet develops multiple vortices with increasing Reynolds
numbers, e.g. we find just a single vortex for (Ca,Re)=(0.25,1.5) and (Ca,Re)=(0.2,4) and
two vortices for the cases of (Ca,Re)=(0.15,10) and (Ca,Re)=(0.1,20).

Let us now consider several configurations from the instationary ITC regime. The results obtained
for the parameter (Ca,Re)=(0.15,15), i.e. (�,�,�)=(0.006kg/ms, 1.44kg/m3,0.01N/m), are
given in Figure 13. Here, the droplet is stretched from spheroidal to ellipsoidal shape, then to
a dumbbell shape before it is ruptured into two daughter droplets. These daughter droplets then
converge to a steady state with respect to topology since surface tension is large enough to prevent
further break-up in this parameter setting.

For the parameters (Ca,Re)=(0.1,25), i.e. (�,�,�)=(0.001kg/ms, 0.4kg/m3, 0.000625
N/m), we anticipate to find a rupture of the droplet into more and smaller droplets over time
since the balance of the surface tension and shear stress is valid up to the large deformation. Thus,
rupture occurs after this elongation phase for a strongly stretched dumbbell-shaped droplet. Here,
the ends pinch off and two rather large satellite droplets are spawned whose deformation behavior
is similar to the initial droplet. The surrounding shear flow further elongates these three droplets
and leads to further rupture of each of these droplets into smaller daughter droplets. This principal

‖The respective material parameters employed in the computations are (�,�,�)=(0.005kg/ms,0.12kg/m3,

0.005N/m), (0.005kg/ms, 0.32kg/m3, 0.00625N/m), (0.006kg/ms, 0.96kg/m3, 0.01N/m), and (0.001kg/ms,
0.32kg/m3, 0.0025N/m). There is no jump in the material parameters across the interface [16, 17].
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Figure 11. Stationary results obtained for the four parameter settings (Ca,Re)=(0.25,1.5), (0.2,4),
(0.15,10), and (0.1,20) (top left to bottom right). Depicted are the configurations of the free
surface in the stationary limit. The respective pressure fields are color coded employing the same
scaling in all plots. The stationary limits are reached at the dimensionless times t∗=203.34,
t∗=538.41, t∗=829.68, and t∗=1649.36 (top to bottom). The simulation domain is 2×1×2 and

the droplet has a radius of r=0.25. The mesh-width is ( 2
128 ,

1
64 ,

2
128 ).

process continues until surface tension effects dominate the deformation behavior of the resulting
daughter droplets; i.e. when the surface tension is larger than the shear stress. This anticipated
behavior is clearly observable from the contour plots given in Figure 14.

5. CONCLUDING REMARKS

In this paper we presented an incompressible Navier–Stokes solver for two-phase flow problems
with surface tension in three dimensions. One of the main concerns of our study was the impact
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Figure 12. Stationary results obtained for the four parameter settings (Ca,Re)=(0.25,1.5), (0.2,4),
(0.15,10), and (0.1,20) (top left to bottom right). Depicted are zooms of the free surface in the surrounding
flow field along the center plane (right). The respective pressure fields are color coded employing the same
scaling in all plots. The stationary limits are reached at the dimensionless times t∗=203.34, t∗=538.41,
t∗=829.68, and t∗=1649.36 (top to bottom). The simulation domain is 2×1×2 and the droplet has
a radius of r=0.25. The mesh-width is ( 2

128 ,
1
64 ,

2
128 ). For the parameters (Ca,Re)=(0.25,1.5), (0.2,4)

(top row) the flow field inside the droplet has a single vortex, whereas for (Ca,Re)=(0.15,10), (0.1,20)
(bottom row) we find two vortices.

of surface tension and its discretization on the overall convergence behavior and the improvement
of mass conservation properties.

Our scheme employs a standard staggered grid finite difference discretization and a projec-
tion method with a fifth-order WENO scheme. The free surface between the two fluid phases is
tracked with a LS approach. Here, the interface conditions are implicitly incorporated into the
momentum equations by the CSF method and surface tension is evaluated using a smoothed delta
functional and an appropriate third-order interpolation scheme. Altogether, our approach exhibits a
second-order convergence away from the interface and a first-order convergence near the interface
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Figure 13. Instationary results obtained for the parameter setting (Ca,Re)=(0.15,15). Depicted are the
configurations of the free surface at the dimensionless times t∗=0, t∗=334.8, t∗=379.2, t∗=396.0,
t∗=397.2, t∗=416.40 (upper left to lower right). The simulation domain is 3×1×2 and the droplet has

a radius of r=0.25. The mesh-width is ( 3
192 ,

1
64 ,

2
128 ).

if the smoothed delta functional is employed; i.e. in the presence of surface tension force. To
cope with the unsatisfactory conservation properties of the LS approach, we employ an improved
reinitialization procedure combined with a global fixed point iteration. The results of our numerical
experiments clearly show this anticipated convergence behavior. Furthermore, the presented results
obtained for the rising air bubble clearly show that the employment of a numerical scheme ensuring
mass conservation with a higher transport scheme is necessary to obtain high-quality results in
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Figure 14. Instationary results obtained for the parameter setting (Ca,Re)=(0.1,25). Depicted are the
configurations of the free surface at the dimensionless times t∗=0, t∗=178.8, t∗=238.8, t∗=330.0,
t∗=358.8, t∗=373.2, t∗=394.8, t∗=418.8 (top to bottom). The simulation domain is 14×1×2 and the

droplet has a radius of r=0.25. The mesh-width is ( 14
896 ,

1
64 ,

2
128 ).

long-time simulations. Moreover, our study indicates that the simulation of bubble dynamics
requires a three-dimensional simulation to capture the true physical deformation and behavior.
Finally, we considered the deformation of a droplet in shear flow with moderate Reynolds numbers
and the presented results correspond very well to those obtained by VOF schemes and the exper-
imental data of [16].
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